A bi-directional approach to comparing the modular structure of networks

Journal article

Here we propose a new method to compare the modular structure of a pair of node-aligned networks.

The majority of current methods, such as normalized mutual information, compare two node partitions derived from a community detection algorithm yet ignore the respective underlying network topologies. Addressing this gap, our method deploys a community detection quality function to assess the fit of each node partition with respect to the other network’s connectivity structure. Specifically, for two networks A and B, we project the node partition of B onto the connectivity structure of A. By evaluating the fit of B’s partition relative to A’s own partition on network A (using a standard quality function), we quantify how well network A describes the modular structure of B. Repeating this in the other direction, we obtain a two-dimensional distance measure, the bi-directional (BiDir) distance.

The advantages of our methodology are three-fold.

First, it is adaptable to a wide class of community detection algorithms that seek to optimize an objective function. Second, it takes into account the network structure, specifically the strength of the connections within and between communities, and can thus capture differences between networks with similar partitions but where one of them might have a more defined or robust community structure. Third, it can also identify cases in which dissimilar optimal partitions hide the fact that the underlying community structure of both networks is relatively similar.

We illustrate our method for a variety of community detection algorithms, including multi-resolution approaches, and a range of both simulated and real world networks.


Straulino, D., Landman, M. & O’Clery, N. A bi-directional approach to comparing the modular structure of networks. EPJ Data Sci. 10, 13 (2021). https://doi.org/10.1140/epjds/s13688-021-00269-8

Daniel Straulino
Neave O’Clery
Mattie Landman
Vol 10, Article number: 13 (2021)
Sustainable Growth
Informal Cities